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Outline 

• Missing Data Principle 

– Missing data mechanisms 

– Basic principles for imputing missing data 

• Applications 

– Impute missing data for income 

– Generate synthetic data for variables for which data 

are not collected at certain iterations - Use the 

internet to look for health information for self 

• Concluding Remarks 
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Item Missing Data 

ID 
Design 

Variables 
X Y Z 

1 O O O O 

2 O O O M 

3 O O M M 

4 O O M O 

…
 

O O O O 

O O O O 

O O M O 

n O O O M 

O: Observed  

M: Missing 

Complex Survey Design Variables: 
 

  Stratum 

  Cluster                 or   Replicate Weights 

  Survey Weights 3 



Missing Data Mechanisms 

• Missing Completely At Random (MCAR) 

– Missingness doesn't depend on anything. 

– Unbiased using deletion approach, but less efficient 

• Missing At Random (MAR) 

– Missingness doesn’t depend on the missing data, 

but can depend on the observed data 

– Unbiased if MAR is accounted for properly 

• Not Missing At Random (NMAR)  

– Missingness depends on the missing data 

– Need to model missingness   
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How to determine the missing 

mechanism 

• MCAR test for multivariate normal data 

– Little R.J., JASA 1988 

• Unverifiable for MAR and NMAR because we 

don’t know the missing data 

– Based on theoretical and/or substantive 

knowledge 

• MAR works reasonably well for most 

applications 
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Imputation Under MAR 

• Fill in missing values with plausible values 

using an imputation model 

• Create a MAR situation by modeling 

covariates that are predictive to  

– Outcome that is subject to missing (M1) 

– Probability of missingness in outcome (M2) 

• M1 is more useful than M2 in bias reduction  

– Little, R.J. and Vartivarian, S., Survey 

Methodology, 2005) 
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Single Imputation 

• One imputed value for each missing observation  

• Treat imputed values as if they were the 

observed, thus standard errors tend to be 

underestimated 

• Remedy: Resampling procedures to incorporate 

imputation uncertainty in variance estimation 

– Bootstrap (Efron, The Annals of Statistics 1979) 

– Jackknife (Miller, Biometrika 1974)  

– Adjusted versions for simple random samples 
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Traditional Single Imputation Methods 

• Mean substitution 

– Mean of observed data for all missing data 

• Regression substitution 

– Predictive value from a regression model 

• Stochastic regression substitution 

– Add random error to predictive value 

• Hot deck (vs. Cold deck) 
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Multiple Imputation 

• Generate imputed values 

– Frequentist approach: predict missing values, then 

add random error drawn from its residual distribution 

– Bayesian approach: randomly draw from the 

posterior predictive distribution of the variable 

– Estimate values explicitly or through MCMC 

• Repeat multiple times 

• Each imputed data is analyzed using standard 

statistical procedures separately  

• Combine multiple estimates using a simple rule 9 



Combining Rule 

– Rubin D., “Multiple Imputation for Nonresponse in 

Surveys”, Wiley & Sons 1987, Chapter 3 
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Validity of Multiple Imputation 

• Depends on how imputation is carried out 

• Adequately fit predictive model  

• Model reflects MAR assumption 

• “Congenial” to the analytic model: model 

assumptions are compatible 

– Meng X.L., Statistical Science 1994 
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Validity of Multiple Imputation cont’ 

• Assumptions are compatible 

– More relaxed assumptions → Less efficient 

– More strict assumptions → More efficient 

• Assumption are not compatible 

– Omit an important term → biased (attenuation) 

– Include an unrelated term → unbiased but less efficient 

• Imputation model need to be general to 

incorporate known and unknown statistical terms 

that may be included in an analytic model 
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Application 1 

Imputing Item Missing Income Data 

HINTS4 Cycle 1 



Item Missing Data at a Glance 
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Background  

Variables 

Missing  

Obs (N) 

Unwgted Missing 

Rate (%) 

Age 68 1.7 

Occupation 160 4.0 

Marital Status 111 2.8 

Education 85 2.1 

Race/Ethnicity 220 5.6 

Rent or Own Home 89 2.2 

Comfortable Spk English 155 3.9 

U.S. Born 47 1.2 

Income 401 10.1 



Weighted Sequential Hot Deck Imputation 

• Cox, B.G., ASA Proceedings 1980, Cox, B.G. and  

Folsom, ASA Proceedings 1981 

• Substitute the missing value using response from a 

donor who is similar to the recipient 

• Means estimated using imputed data match weighted 

means using observed data in expectation 

• Not depends on the distribution of outcome, thus less 

sensitive to model failure 

• Variations of hot deck: random hot deck, predictive 

mean, predictive propensity, etc. 
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Select Covariates 

 

 

 

 

• Select important covariates associated with  

– Income  and/or Probability of missing income 

– Race/ethn, Education, Renter/Owner, Speak English, Nativity 

– Implemented in SUDAAN Hotdeck Procedure 

• Records with missing data on covariates are not 

imputed 

• Have the option for multiple imputation which is not 

‘proper’ because the same donor pool is repeatedly 

used and variance is underestimated 

• Modified by adding a Bayesian Bootstrap procedure 

before each imputation 
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Application 2 

Data Enhancement: Synthetic Data for 

Variables not Collected in a Iteration 

of HINTS 



Motivation 
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• Concern over response burden and data quality 

• Not all items are asked in every iteration 

• Limit the usefulness of the data for analyzing 

temporal trends 

• A solution is to use imputation method to 

recover such ‘missing’ information based on 

reasonable model assumptions 

 

 

 

 



Item Comparability 
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Design 

Variables 
X Y Z T U V W 

Iteration 1 (2003) O O O O M O M M 

Iteration 2 (2005) O O O M O M O M 

Iteration 3 (2007) O O M O O M M O 

Iteration 4 (2012) O O O O O O O O 

O: Observed;  M: Not Asked and Treated as Missing 

• Pattern of item comparability across all iterations 

• Same inference population 

• Survey designs vary slightly: sampling frame, 

design factors, and data collection mode 

3’s 2’s 4’s 



Example: Have you used the Internet to look for health 

or medical info. for self in the past 12 months? 
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• Not asked in 2007 

• Large gap of 7 yrs btwn iteration 2 and 4 

• Basic idea is to  

– Stack data from all iterations to create a concatenated data set 

– Turn to a typical missing data problem 

– Treat the 2007 data as missing 

– Fill in with multiple imputes 

 Design 

Variables 
Year X Y 

Iteration 1 (2003) O 2003 O O 

Iteration 2 (2005) O 2005 O O 

Iteration 3 (2007) O 2007 O M 

Iteration 4 (2012) O 2012 O O 



Question: Have used the Internet to look for health or 

medical info. for self in the past 12 months? 
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• Missing At Random (MAR)? 

• Missing data may depend on time, thus making 

MAR is a strong assumption 

• In this illustration, we hope to use the 

correlations between X and Y, and Time and X to 

recover the not otherwise missing information on 

the correlation between Time and Y. 



Distribution of Outcome 
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Note: Complex Survey Design Features are Incorporated in all Estimates. 



Covariates 

 

23 



Imputation Method 
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 • Most covariates have missing data 

• Most ~ 1-5%, Max 14% for income 

• Item missing data are simultaneously imputed 

together with the iteration missing data 

• Sequential regression multivariate imputation (SRMI) 

– Raghunathan T.E., Lepkowski J.M. et al, Survey Methodology 

2001 

– IVEware in SAS, MICE in R, ICE in Stata 

 

 



Sequential regression multivariate imputation 
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 • Different conditional multivariate regression 

model depends on the type of outcome 

– Continuous: linear model based on normality 

– Binary: logistic model 

– Categorical: multinomial model 

– Count: Poisson model 

• Handle skip pattern and higher order terms 

• For example, internet activity related items are only 

imputed for those who use the Internet 

• Interaction terms 

 



Model Validation 
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 • Simulated data using data from 2003, 2005, and 2012 

• Delete outcome data for 2005 

• Build imputation model to impute 2005 data 

• Compare to the original 2005 estimates 

• Similar estimates suggests valid imputation models; 
 Large differences warrants further model improvements 

 

 

 



Final Analysis Results 
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Thoughts on Future Survey Planning  
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Design 

Variables 
Year X Y 

Iteration 1 (2003) O 2003 O O 

Iteration 2 (2005) O 2005 O O 

Iteration 3 (2007) 
O 

2007 
O O 

O O M 

Iteration 4 (2012) O 2012 O O 

• This current approach is limited by the lack of information 

on the correlation between time and Y for 2007 

• Improved by building a bridge btwn Time and Y by 

measuring Y on a random sample in 2007 

• Some cost in precision, but large gain in data availability. 



Concluding Remarks 
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• Imputation method is a flexible tool for 

enhancing the data usability by recovering 

missing information 

• Key issue is to model reasons for missing 

data, if not ignorable. 

• “General” model assumptions to protect 

against assumption failure 

• Model diagnosis also apply to imputation to 

ensure an adequate fit 



Questions and Suggestions   
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More details on SRMI approach 

 

 

 



SRMI 
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 • Sort variables in increasing order by the amount of 

missing data 

• Each variable is sequentially imputed 

– Step 1: impute 1st variable using fully observed sample 

– Step 2: impute 2nd variable on fully observed plus imputed 

sample in Step 1 

– Step 3: cycle through all variables with missing data 

completes the first iteration 

– Step 4: repeat Step 1-3, but conditional on all variables, 

each time use updated imputed values  

• Typically 5-10 iterations are sufficient 

 



SRMI: Simple Illustration 
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 ID 
Design 

Variables 
X Y Z 

1 O O O O 

2 O O O M 

3 O O M O 

4 O O M M 

5 O O O M 
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